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Abstract established from the perspective of psychological exper-
iments, the neural mechanisms that underlie this pre-

A creature presented with an uncertain and
diction are less well understood. Prediction, and its ap-

variable environment needs to anticipate in- propriate use for action, is essentially a computational

portant future events or risk diminished chan-
concept, but this still leads a wide range of possible the-

ces for survival. These events can include ories to explain existing data.

the presence of food, destructive stimuli, and One way for an animal to learn to make predictions is for
potential mates. In short, a nervous system it to have a system that reports on its current best guess,
must have means to generate guesses about its and to have learning be contingent on err-or-s in this pre-
most likely next state and the most likely next diction: learning only happens if the animal becomes
state of the world. Psychologists have studied surprised based on its prediction. This is the under-
conditions under which animals can learn to lying mechanism behind essentially all adaptation rules
predict future reward and punishment. In this in engineering (Kalman, 1960; Widrow & Stearns, 1985)
paper, we review the computational theory

that may be relevant for understanding this
and particular learning rules in psychology (Rescorla &

form of learning. Some of the central nlech-
Wagner, 1972; Mackintosh, 1983; Pearce & Hall, 1980).

JVe consider below the general requirements for such a
anisms required for predictive learning have

been discovered in both vertebrate Ljungberg
signal in the brain.

et al’s (1992) and invertebrate brains (Hanl- The construction, delivery and use of an error signal re-

mer, 1994). lated to predictions about future stimuli would require

the following:

Z) access to a representation of the phenomenon to be

Prediction
predicted such as the amount of reward or food.

t~) accem to the current predictions so that they can be

Animals are capable of predicting events aud the couse-
colnparecl to the phenonlenon to be predicted.

quences of those events on the basis of the sensory infor-
LIL) capacity to influence plasticity (directly or indirectly)

]U structures responsible for constructing the predic-
ation they receive and directing their actions accorcl- tious.
ing to those predictions (see Dickenson, 1980; Mackin-

tosh, 1983; Gallistel, 1990 and Gluck and Thompson,
ZU) sufficiently wide broadcast of the error signal so that

1987 for reviews). Although these conclusions are well
stimuli in different modalities can be used to make and
respond to the predictions.
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physiological work suggests that these systems influence
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ongoing neural activity as well as a number of critical

physiological functions. These systems are also known

to be required for normal development, of the response

properties of cerebral cortical neurons in various regions

of sensory cortex

Models of Classical Conditioning

We briefly summarize here the mathematical assunlp-

tions that underlie the approach that we have taken

to modeling animal learning. At time t, the animal

sees various conditioned stimuli ( CSS) which are rep-

resented in the activity x(t) = {Zi(t)} of units Zi, i E

{1, N}. The units can be considered populations of neu-

rons in the cerebral cortex that represent states of the

environment. The animal also receives a scalar reward

r(t). The temporal difference (TD) approach (Sutton

& Barto, 1987) assumes that the computational task is

to use the CSS to fit a function V(x(t)) that plerlicts a

discounted suTn of faiure rewards:

m

V(t) = ~-f”-’r(u) (1)

U=t

where O < ~ ~ 1 is a discount factor that, models the

fact for t~e animal that future rewards may be worth

less than current ones. This equation is key: Predict-

ing the sum over future rewards represents a signifi-

cant advance over static conditioning models SUC1] a>

the Rescorla-Wagner rule (Rescorla & Wagner. 1972).

In non-deterministic problems, where stil]ldl are not

always followed by the same reward consequences, tile

task is to predict the mean of this quantity.

The next major assumption is that, V(t) can be treated

as a function of x(t). This amounts to assuming that

the environment has a llarliov property (future rewards

do not depend on past rewards except through the cur-

rent, stimulus state z(t)). Assuming this, V(x(t)) S11OU1CI

satisfy a consistency condition:

V(x(t)) = r(t) + yl’(x(t + 1)) or equivalently,(2)

c(t) - r(t) +-y V(Z(t+ l)) – V(z(t)) = O (3)

where ~(t) is called the TD error.

In its simplest form, V(~(t)) = ~~1 z,(t) wi(t) has

parameters w(t) = {w%(t)} that are adjusted to make

c(t) = O. It is natural to make the adjustments using

the delta rule (Rescorla & Wagner, 197!2; YVidrow &

Stearns, 1985):

Aw,(t) = ai(t)zi(t)~(t) (4)

where ai(t) is a stimulus specific learning rate. sLlt,-

ton (1988), Dayan and Sejnowski (1!)94), ancl other>

have shown conditions under which this upclate lnakcs

V(2(t)) converge to the optimal \’(t),

The weights w(t) in equation 4 are updated according

the learning rule suggested by Hebb ( 194!3) basecl on

the correlation between presynaptic activity z, (t) and

a quantity that depends on postsynaptic activity c(t).

However the form of the postsynaptic term changes the

computational behavior of the algorithm from the tradi-

tional Hebb rule, which performs principal components

analysis, to something closer to a predictive delta rule.

If the brain takes advantage of the mathematical frame-

work for learning outlined above, then there may be

neurons that compute the prediction error in equation 3.

Such neurons have recently been discovered in an area

of the brain called the ventral tegrnental area (VTA).

These neurons are dopaminergic and their axons project

diffusely to widespread areas of the cortex and the ven-

tral striatum. The latter brain region is known to be an

important center for reward learning and is involved in

many addictive behaviors.

A significant fraction of neurons in the VTA tend to

fire in response to the delivery of reward to a naive ani-

mal performing a behavioral task in which some sensory

stimulus, such as a light, consistently predicts the deliv-

ery of reward. After the task has been learned, however,

few cells respond to the delivery of reward and more

cells respond to the onset of the predictive sensory cue

(Ljungberg et al 1992; Schultz et al 1993). We suggest

the VTA dopaminergic cells are reporting the predic-

tion error for the discounted reward, ((t) in equation 3.

(Quartz et al, 1992; Montague et al, submitted).

h’euroscientists have previously suggested that neuro-

Illodulators mi:llt modulate synaptic plasticity. The

global signal could act as a “print now” command to

regulate when learning talies place. Predictive learning

in equation 4 is conlputationally more powerful than us-

iug neuromoclulatory influence merely to gate periods

of conventional Rebbian learning (Rauschecker, 1991).

However, in orcler for this scheme to work, the repre-

sentations in the cortex which are being weighted must

predict the time of the reward as well as its magnitude.

How this is accomplished by the brain is an open re-

search problem (hfontague et al, submitted).

Models of Instrumental Conditioning

One facet of this framework for classical conditioning is

that a llnli (Quartz et al, 1992; Montague et al, sub-

mitted, Dayan, 1994) can be made to instrumental con-

ditioning, even though the exact relationship between

these two is still the subject of substantial debate. A

\vOrliillg hypothesis is that animals use their capacity

to learn to preclict events of importance in the world

to control their actions appropriately—not only blinli-

ing just before the delivery of a signaled puff of air to

a nictitating membrane, but, also learuing complicated

a]ld even comparatively arbitrary sequences of actions

1)1 response to external (and internal) stimuli. There is

agaiu conlput, ationdl theory as to appropriate learning

rules for the resulting control problem. Many of these

leanlillg rules \vere first introduced in the psychology

literature.

Tlie capacity for learning predictions over time is used
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to solve the temporal credit assignment problem, which
comes from the distance in time between making an ac-
tion and seeing its consequence in terms of getting to the
goal, It turns out that temporal difference algorithms
learn exactly the predictions of proximities that are re-
quired for dynamic programming (Bellman, 1957). In
fact, the same error signal that these algorithms use to
learn how far states are away from the goal can also be
used to criticize the choice of actions (Barto, Sutton &
Anderson, 1983; Barto, Sutton & Watkins, 1989).

In instrumental conditioning, an animal has various ac-

tions available to it (characterized, say, as coming from

set A), and its choice affects its rewards. In general, in

tasks such as mazes with multiple choice points, actions

can affect rewards in complicated ways. Worse, the an-

imal may face the temporal credit assignment problem

of working out which action out of a whole sequence

was critical for the rewards it received. Markov deci-

sion problems provide a general theoretical framework

for these tasks (Barto et al, 1989), and the techniques of
dynamic programming (Bellman, 1957) provide a gene-
ral theoretical framework for their solution.

The key concept is a pol~cy ~(z(t )), which describes

how actions are assigned to states (and is sonlethillg

like a stimulus-response function). This assignment wi 11

usually be stochastic so that different actions will be

tried at the same state. If the anilnal were to follow

a fixed policy, then the TD methocls described above

would evaluate it, in the sense of learniug how nluch

reward Vm (z) would be expected in the future, if the

animal is at state z and chooses actions according to

m. The method of policy iteration in dynamic program-

ming (Howard, 1963) uses this evaluation to improve the

policy. Barto et al (1983) described a simple version of
policy iteration in which each action a E A is associated

with a set of adjustable parameters t)a(t) = {u, (t)}. At,

time t,the system calculates an action choice ‘valile’ for

each action as:

u“(t) = ~ ‘V:(t) zt(t) + ?]<’(t)

i=l

(5)

where qa(t) are random noise values. U“(t) is used as

an estimate of the appropriateness of performing action

a relative to doing other actions, so the role of qa (t ) is

to ensure that each action is tried often enough in each

state so that good overall policies can be iclentified. The

ultimate action selected is the largest of these:

a“ = argmaxau’z(t). ((j)

In this formulation, c(t) in equation 3 is used to criticize
the choice of action, indicating whether the one selected
was better or worse than the average. Va” (t) is updated
as:

Avf” (t) = fl, (t)x, (t)c(t), (7)

where ,f3~(t)is another stimulus specific learning rate.

The v:(t) for the non-selected actions a # a“ are left

fixed. As learning proceeds, this tencls to improve the

policy.

The key attraction of this form of policy iteration is
that the signal, ((t), that we postulated the VTA cells
to be reporting, has two roles: training the prediction
parameters w(t), and training the action parameters

Va (t).Evidence that drug self-administration and elec-

trical self-stimulation of the dopaminergic inputs that

the projection from the VTA to the ventral striatum

suggest that this system ios particularly important for

reward learning.

Note that according to these models, classical and in-

strumental conditioning are very closely related (Mack-

intosh, 1983 ). Learning to predict the values of states is

classical conditioning; using this information to improve

policies or choose actions is instrumental conditioning.

Conclusions

In summary, the TD model of the diffuse systems out-

lined here allows expectations about the future to in-

tiuence synaptic change that occur in the present. Cer-

tain aspects of clecision making can also be understood

~vltllin this framework (Montague et al, submitted). A

better developed connection between this model, phys-

iological data, and behavioral decisions may open the

way for interesting experiments to uncover the neural

nlechanislm that influence learning and decision-making

in lnorw complicated situations. There are many aspects

of learning that have not yet been addressed: How are

appropriate representations of sensory stimuli formed

by populations of cortical neurons? How is time repre-

sented by neural populations? How does the brain reject

spurious correlations that are not causal? The advan-

tage of having an overall framework like the one outlined

here is that, these questons become grounded in ways

that are >ul~ject to experimental test. The prospect of

~1rigorolls mathelllatical framework for animal learning

will allow sharper questions to be asked, and perhaps

nlore definitive allslvers to be founcl.
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